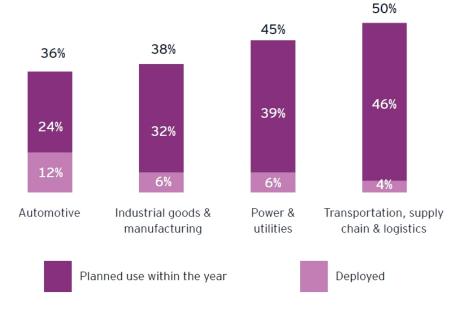
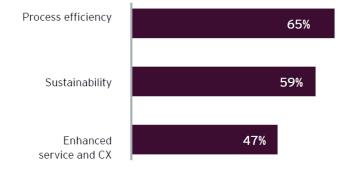


Metaverse & XR Ein fachliche Einführung

Prof. Dr.-Ing. Dipl.-Kfm. Christoph Runde Virtual Dimension Center (VDC) Fellbach Auberlenstr. 13 D-70736 Fellbach www.vdc-fellbach.de

Usage of field XR in Industry

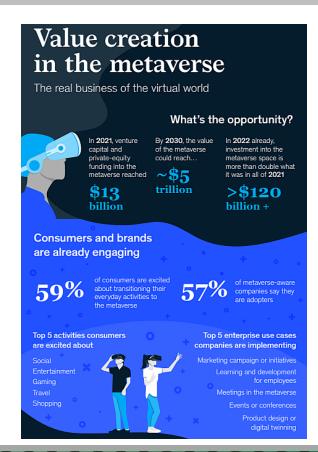




Douin, Vincent; Kindt, Stefan, et al.: The metaverse at work. EY / Nokia: London, June 2023

Figure 4.20: Deployment of field XR by industry

Figure 4.21: Key benefits reported by companies currently using field XR



Versprechen und Aktuelles...

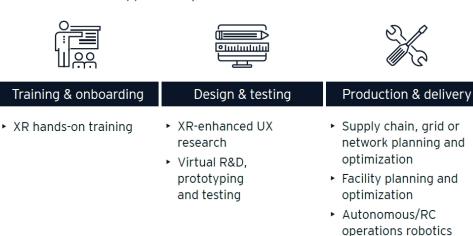
- very big promises, but also
- very controversial discussions
- job cuts at Meta
- disbandment of Disney's Metaverse division...

important: to distinguish between

- Consumer Metaverse
- Commercial Metaverse
- Industrial Metaverse

aus:

McKinsey & Company



► Field XR

Douin, Vincent; Kindt, Stefan, et al.: The metaverse at work, EY / Nokia: London, June 2023

Figure 4.1: Metaverse use cases mapped to key areas of the business value chain

Service & support

- Visualized predictive maintenance
- Autonomous/RC maintenance robotics

Industrial

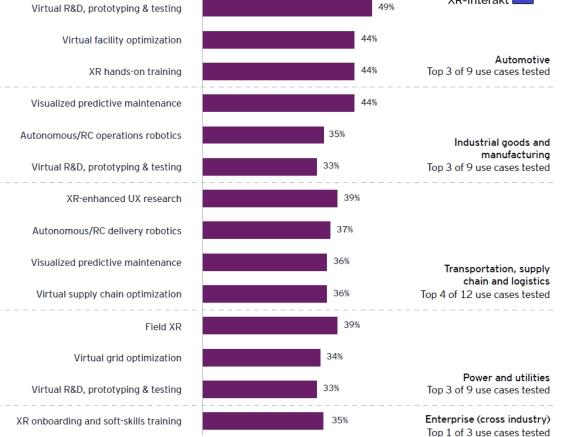
- Virtual recruiting and hiring
- XR onboarding and soft-skills training
- Virtual office and workspaces
- Virtual showroom*
- Virtual product and service trials*

 Metaverse-enhanced customer support*

Non-customer-facing use cases, covered in detail throughout the report

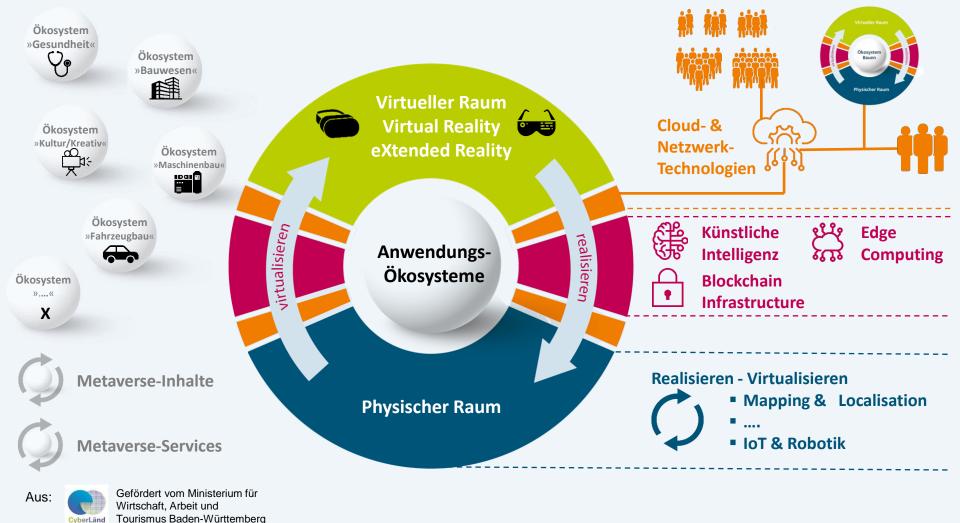
*Customer-facing enterprise use cases covered in less detail throughout the report

MV Use Cases to transform Industries


Kindt, Stefan, et al.: The metaverse at work. EY / Nokia: London, June 2023

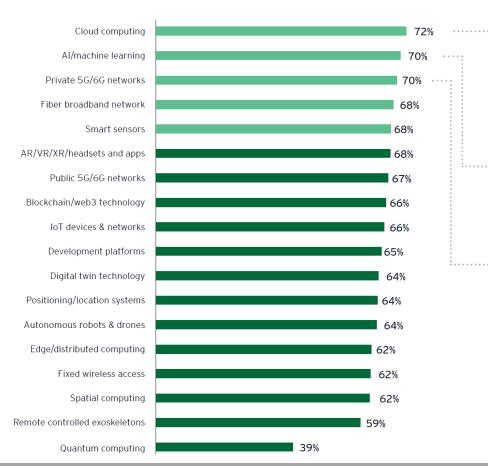
Douin, Vincent;

Figure 4.2: Use cases most expected to deliver transformative value, by industry



Eine Definition des Metaversums

■ Das Metaversum (englisch metaverse) ist ein kollektiver virtueller Raum, der durch die Konvergenz von virtuell erweiterter physischer Realität und physisch persistentem virtuellen Raum entsteht – einschließlich der Summe aller virtuellen Welten.



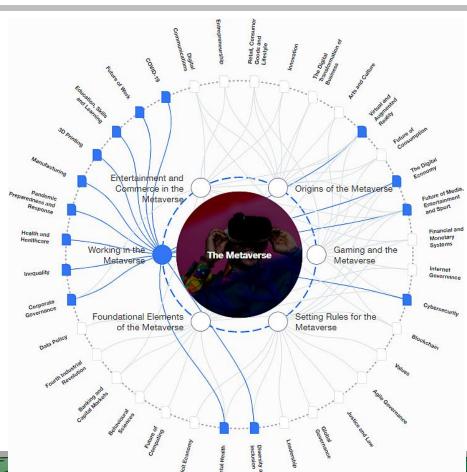
Key Technologies

Douin, Vincent; Kindt, Stefan, et al.: The metaverse at work. EY / Nokia: London, June 2023

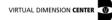
17 percentage point increase in importance of cloud computing for experienced companies over inexperienced

9 percentage point increase in importance of Al/machine learning for experienced companies over inexperienced

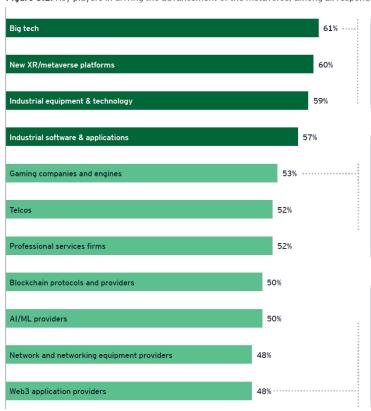
11 percentage point increase in importance of private 5G/6G networks for experienced companies over inexperienced


While all respondents value essential metaverse enablers, those with first-hand experience are even more aware of the need for foundational capabilities.

Metaverse Transformation Map of World Economic Forums

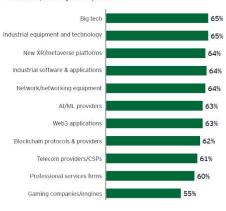


Challenge XR platforms: who is driving MV advancement & use cases? XR-Interakt



Douin, Vincent; Kindt, Stefan, et al.: The metaverse at work. EY / Nokia: London, June 2023

Figure 5.1: Key players in driving the advancement of the metaverse, among all respondents



Big tech companies are already engrained in the infrastructure of the metaverse through their existing cloud services and visualization tools, while also investing heavily to create new metaverse platforms and AR/VR headsets.

Gaming companies and engines play a key role in the early metaverse by providing the technology needed to make high-fidelity virtual environments like digital twins. Many of the features needed for the industrial and enterprise metaverses like advanced 3D graphics and physics engines have been in development for over a decade in gaming companies.

Web3 application providers, while not ranked as highly as other players, are still viewed as important by nearly half of respondents for their ability to handle many of the new challenges metaverse technology will bring. Challenges in user authentication across companies, for example, can be solved with the use of decentralized identities (DIDs)

Figure 5.5: Key partners in deploying industrial metaverse use cases, among all respondents

Metaverse future projection World Economic Forum

FIGURE 7

Projected horizons of metaverse growth and adoption

Economic models selected today must consider the varying stages of maturity across technology, policy and wider enablers that these choices may use, as these choices will act as the foundations for how experiences of product and service offerings will evolve over time.

Now Early adoption and traction

Near Ecosystem maturity

Next Mass adoption

Today-2 years~

Initial enablement and experiences

Early development and adoption of worlds and spaces powered by major investment in content production, new tools and features, foundational technologies, hardware, software and identity solutions.

2-5 years~

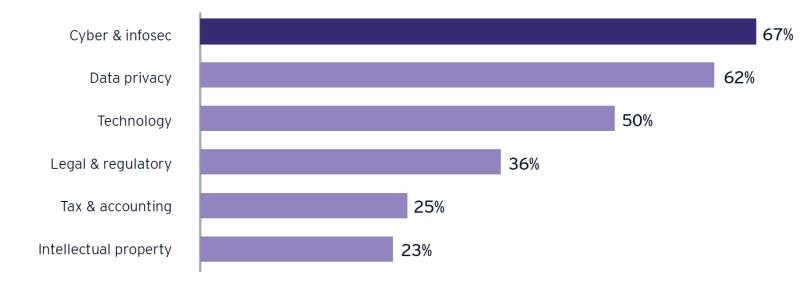
Mainstream products and technologies

Development of standards for enabling interoperability, mass adoption of immersive technologies, new business models based on content distribution, new financial products and services and the proliferation of 5G and edge computing.

5-10+ years

Proliferation of worlds, products and services

Maturity and adoption will set future scenarios, with economic models to be validated further in future reports supported by the identification of new value chains and future growth scenarios.



Douin, Vincent; Kindt, Stefan, et al.: The metaverse at work. EY / Nokia: London, June 2023

Figure 6.1: Top risks in deploying metaverse use cases, among experienced companies

positioning ourselves in future topics

Europe finds ourselves only at the sideline of a fight for global XR ecosystems.

problem:

- Europe will probably not create a huge, global platform provider
- platform providers aim at vendor lock-in

questions:

- what options for action do we have?
- what can be our future role to create added value and employment?

=> standardization!

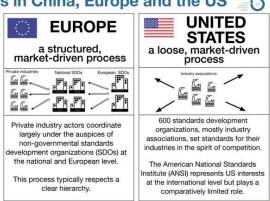
desktop

smart glasses

VR headsets

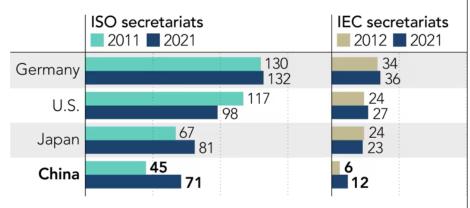
game consoles

opportunities: positioning ourselves in future topics


Germany is still excellent on norming and standardization:

top international influencing position to ensure interoperability

Setting standards in China, Europe and the US


Coordinated by the Standardization Administration of China (SAC), which lies under the State Administration for Market Regulation (SAMR), an arm of the State Council.

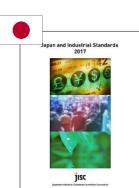
Source: John Seaman, "China and the New Geopolitics of Technical Standardization", Notes de l'Ifri, Ifri, January 2020

China's growing clout in standardization organizations

(Number of secretariat positions by country)

ISO stands for International Organization for Standardization, IEC for International Electrotechnical Commission; includes twinned ISO secretariats Source: ISO, IEC, U.S. National Institute of Standards and Technology

Standardization Strategies: global view


- Actively promote the consistent worldwide application of internationally recognized principles in the development of standards.
- work to prevent standards and their application from becoming technical trade barriers to U.S. products and services.
- Strengthen international outreach programs to promote understanding of how U.S. voluntary, consensus-based, market-driven standards can benefit businesses, consumers, and society as a whole.
- Respect diverse funding models for the U.S. standards system.
- Address the need for standards in support of emerging national priorities.

- supporting the EU's leading position as a forerunner in key technologies and promoting EU core values
- leveraging the European standardization system to deliver on the twin green and digital transition and support the resilience of the single market
- new High-Level Forum for Member States and European standardization organizations
- foster the development and deployment of international standards for a free, open, accessible and secure global internet
- establish an EU internet standards monitoring website
- monitor the effective implementation of existing commitments on standardization in EU trade agreements
- concerned about decision-making in ETSI

- 15-year plan to shape the future, to set the global standards for the next-generation of technologies.
- pushing domestic firms and experts to be part of the global effort to set standards
 - research on China Standardization System, Method and Evaluation
- research on Supporting High-quality
 Development Standardization System
- research on Standardization Military-Civil Integration Development
- start with the national standards of virtual reality technology, integrated circuit design, intelligent health care and 5G key components, and gradually expand to the emerging areas of Internet of Things, photovoltaic, information equipment and other industries.

- · Necessity of national standards
- Clarification of appropriate quality levels
- Revisions of the Industrial Standardization Law
- Observance of JIS standards and JIS markings
 Responses to Inappropriate ISO and IEC.
- Responses to Inappropriate ISO and IEC Standards
- Relationship with Standardization Organizations in Europe
- Support for Strategic Standard Proposal
- Active Contribution to Standardization Activities
- Programs for Developing Standardization Experts in Asia and the Pacific
- Standardization regarding Information Technology, environmental preservation, consumers, elderly people, and people with
- disabilities, manufacturing technology and industrial platform technology

Mit Normung Zukunft gestalten!

- International and European trade is facilitated by standardization
- Standardization relieves the burden on government regulation and supports it
 Germany is driving forward standardization
- worldwide in future topics by networking stakeholders, establishing new processes and open platforms for coordination.
- Industry and society are the driving forces in standardization
- Standardization is used as a strategic and attractive tool, especially by companies.
- Standardization has a high status in the public perception

- advance national standards system
- innovate KS management systemstrengthen standard technology
- strengthen standard technolog infrastructure
- advance measurement standards
- advance legal metrology system
- actively participate in international standardization activities
- lead the international de-jure standardization
- support international de-facto standardization
- address the technical barriers to trade (TBT)
- assist the private sector in increasing its capacity to develop standards
- foster standardization capacity of private sector
- promote standard development activity of producer group

positioning ourselves in future topics

Chris Kremidas-Courtney, senior fellow at Brussels think tank "Friends of Europe" and Lecturer for Institute for Security Governance (ISG) in Monterey, California.

He said that China plans to "be the world leader in metaverse development," a technology that dovetails with its plan for a state-controlled digital renminbi. Standard-setting is the natural first step in that roadmap.

"If you want to seize the future, you set the standards for it"

Chris said.

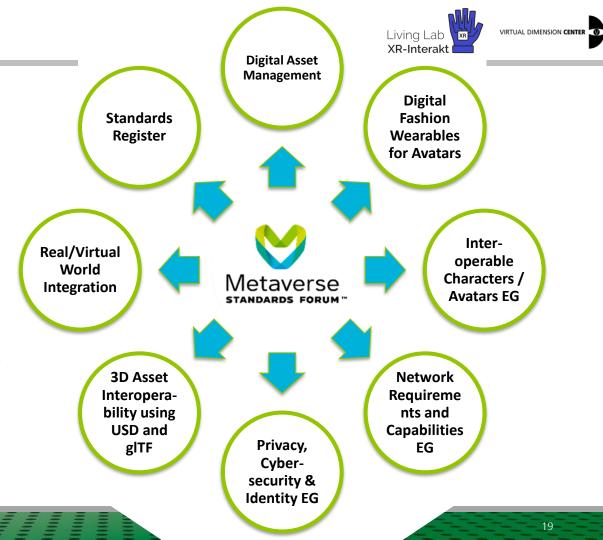

Beijing is coming for the metaverse

Proposals reviewed by POLITICO show China wants to assert state control over virtual environments.

BY GIAN VOLPICELLI
AUGUST 20, 2023 | 4:00 PM CET | 5 MINUTES READ

The Institute of Electrical and Electronics Engineers (IEEE) is a global professional association of engineers primarily from the fields of electrical engineering and information technology, legally based in New York City with operational headquarters in Piscataway, New Jersey. It organizes professional conferences, publishes various professional journals, and forms committees for the standardization of techniques, hardware, and software. Scientific contributions in journals or to IEEE conferences are generally presumed to be of particularly high professional quality. With publications like the IEEE Spectrum journal, the organization also promotes interdisciplinary information and discussion on the societal impacts of new technologies. The IEEE organizes several subgroups addressing VR or AR topics, including (1) Digital Reality, (2) Augmented Reality Learning Experience Model (AR-LEM), the (3) IEEE 2048 VR/AR Working Group (VRARWG), and a (4) Smart Glasses Interest Group. Additionally, the IEEE operates a Standards Group. Where the latter collaborates with one of the aforementioned four theme groups, V/AR-relevant norms, standards, and guidelines are created..

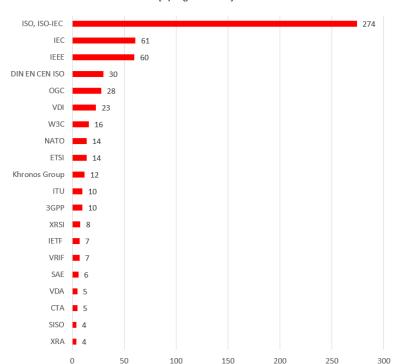
1589 ARLEM


XR Standards Working Groups

The World Wide Web Consortium (shortly W3C) is the body responsible for standardizing technologies on the World Wide Web. It was founded on October 1, 1994, at the MIT Laboratory for Computer Science in Cambridge, Massachusetts. The W3C is a membership organization. It develops technical specifications and quidelines through a mature, transparent process to achieve maximum consensus about the content of technical protocols, high technical and editorial quality, and approval by the W3C and its followers. Examples of technologies standardized by the W3C include HTML, XHTML, XML, RDF, OWL, CSS, SVG, and WCAG. Within its "Immersive Web Community Group," the W3C addresses VR and AR topics. Already in the early 1990s, ideas for a 3D extension of the internet emerged at the first HTML conferences, which then resulted in the Virtual Reality Language (VRML) as a counterpart to HTML.

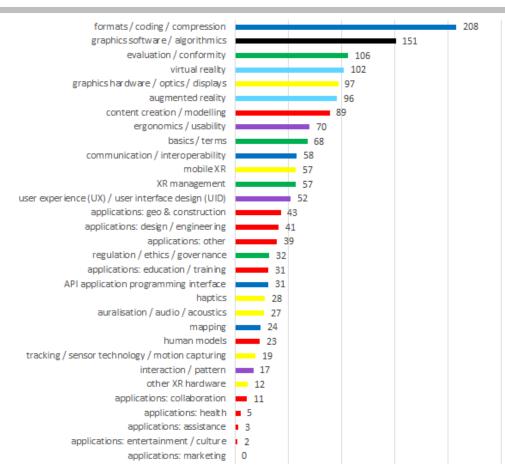
XR Standards Working Groups

The Metaverse Standards Forum (MSF) was founded in June 2022 to foster the development of interoperability standards for an open and inclusive metaverse, and accelerate their development and deployment through pragmatic, action-based projects. Since the vision of the metaverse is still a work in progress, the group also has the stated purpose of bringing some order to the underlying terminology of the metaverse. The MSF is an industry-wide effort to harmonize standards and best practices for the metaverse. Its members, which to date number 1,800, include tech titans Google, Meta, Microsoft and Nvidia; standards bodies Khronos Group and Web3D Consortium; multinational software companies Adobe, Autodesk and Epic; and professional technology services firm Accenture. Members of the forum hope the process will help build trust among the builders of the metaverse. This is important as the industry explores new technologies and new business models. Early blockchain and decentralized finance efforts attempted to address trust programmatically, only to discover new vulnerabilities and types of abuse no one had previously imagined. The MSF is free for all participants, including companies, standards organizations, non-profit organizations, industry associations and universities.


24.10.2023

XR Standard Development Organizations (SDOs)

published XR norms, standards, guidelines, recommendation [by organizations]


XR Standards topics: what is been worked on?

ranking

- XR standards,
- XR guidelines,
- XR recommendations by frequency of topic

0

50

100

150

200

250

XR Standards clustering: focussing on 7 main topics

XR applications

clustering

- XR standards,
- XR guidelines,
- XR recommendations into 7 topics

haptics

•mobile XR

other XR hardware

•human models fundamentals of XR content creation / modelling virtual reality applications: education / training augmented reality applications: design / engineering applications: health applications: assistance applications: collaboration 198 applications: marketing... 287 XR management •basics/terms •XR management •regulation / ethics / governance hardware: optics, haptics, acoustics, tracking, mobile 263 •evaluation / conformity •graphics hardware / optics / displays 240 auralisation / audio / acoustics *tracking/sensortechnology/motion capturing UX, ergonomics, human factors 139 user experience (UX) / user interface design (UID) ergonomics / usability 151 interaction / pattern 321 graphics software, CGI

graphics software / algorithmics.

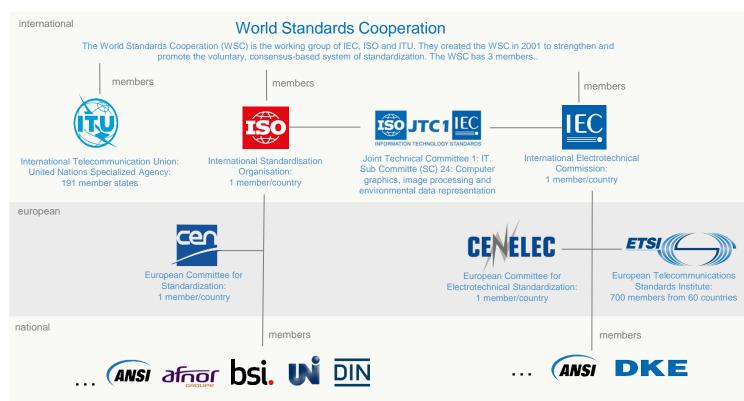
- coding, mapping, interoperability, communication
- API application programming interface
- *formats / coding / compression
- communication / interoperability
- mapping

Recognized SDOs:

- These a re officially recognized by regulation systems or political bodies
- ITU, UN specialized agency for information and communication
- UE regulation 1025/2012 rules the standardization at an European level and lists a set of reference SDOs with either an international (ISO, IEC, and ITU) or European scope (CEN, CENELEC, and ETSI)

Not Recognized Organizations:

- These are not recognized by any political bodies
- IEEE is a primary SDO with a large number of active technical standards, ranging from wireless communications and digital health to cloud computing, power and energy, 30 video, electrical vehicle standards, and the Internet of Things. It was created by the Institute of Electrical and Electronics Engineers (IEEE), the American association of Electrical and Electronics Engineer and it brings together and organizes members from all over the world.



Structure of International Standardization

National SDOs organize socalled "mirror committees" to ISO and IEC committees. They represent national input and interests in ISO and IEC and feed information from ISO and IEC back to their homeland.

DRAFT INTERNATIONAL STANDARD ISO/IEC DIS 3721-1

ISO/IEC JTC 1/SC 24 Voting begins on: 2021-09-01 Secretariat: BSI

Voting terminates on: 2021-11-24

Information technology — Computer graphics, image processing and environmental data representation — Information model for Mixed and Augmented Reality Contents —

Part 1:

Core Objects and Attributes

ICS: 35.140

THIS DOCUMENT IS A DRAFT CIRCULATED FOR COMMENT AND APPROVAL. IT IS THEREFORE SUBJECT TO CHANGE AND MAY NOT SERSEFERED TO AS AN INTERNATIONAL STANDARD UNTIL PUBLISHED AS SUCH.

IN ADDITION TO THEIR EVALUATION AS BENG ACCEPTABLE FOR NOUSTRIAL TECHNOLOGICAL COMMERCIAL AND USER PURPOSES, DEAFT STEERATIONAL STANDARDS HAVE ON COLCASION RAWE TO BE CONSIDERED IN THE LIGHT OF THEIR POTENTIAL TO BECOME STANDARDS TO WHICH REFERENCE MAY BE MADE IN HATIONAL RECULATIONS.

RECIPIENTS OF THIS DRAFT ARE DIVITED TO SUBMIT, WITH THEIR COMMENTS, NOTSPICATION OF ANY RELIVANT PATENT RIGHTS OF WHICH THEY ARE AWARE AND TO PROVIDE SUPPORTING DOCUMENTATION.

This document is circulated as received from the committee secretariat.

Reference number ISO/IEC DIS 3721-1:2021(E)

© ISO/IEC 2021

INTERNATIONAL STANDARD

ISO/IEC 23488

> First edition 2022-05

Information technology — Computer graphics, image processing and environment data representation — Object/environmental representation for image-based rendering in virtual/mixed and augmented reality (VR/MAR)

Technologies de l'information — Infographie, traitement d'images et représentation des données environnementales — Représentation d'objets/environnements pour l'habillage à partir d'images réelles dans la réalité virtuelle/mixte et augmentée (VR/MAR)

Reference number ISO/IEC 23488:2022(E)

© ISO/ IEC 2022

INTERNATIONAL STANDARD ISO 17901-1

First edition

Optics and photonics - Holography -

Part 1:

Methods of measuring diffraction efficiency and associated optical characteristics of holograms

Optique et photonique - Holographie -

Partie 1: Méthodes de mesurage de l'efficacité de diffraction et caractéristiques optiques associées aux hologrammes

TSO

Reference number ISO 17901-1:2015(E)

© ISO 2015

Examples of XR standards

International Telecommunication Union

ITU-T

G.1035

TELECOMMUNICATION STANDARDIZATION SECTOR (11/2021)

SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

Multimedia Quality of Service and performance – Generic and user-related aspects

Influencing factors on quality of experience for virtual reality services

Recommendation ITU-T G.1035

NORTH ATLANTIC TREATY ORGANIZATION

SCIENCE AND TECHNOLOGY ORGANIZATION

AC/323(HFM-MSG-323)TP/1039

STO TECHNICAL REPORT

TR-HFM-MSG-323

Guidelines for Mitigating Cybersickness in Virtual Reality Systems

(Guide d'atténuation du cybermalaise dans les systèmes de réalité virtuelle)

Peer-reviewed Final Technical Report of the Human Factors and Medicine / Modeling Simulations Group, Activity Number 323. This Report describes the outcome of the activity performed during the study.

Published October 2021

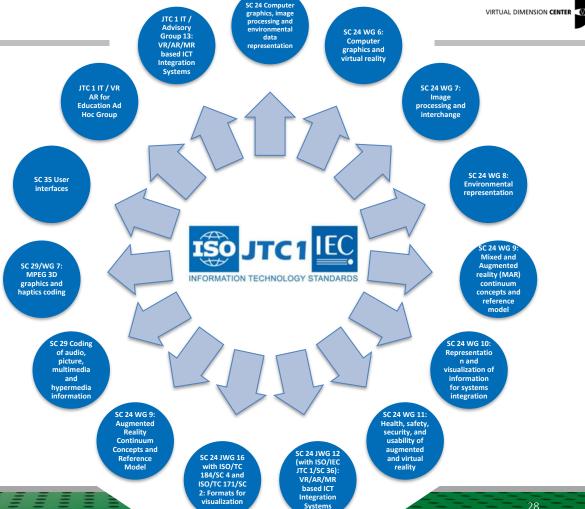
Distribution and Availability on Back Cover

3GPP TR 26.928 V17.0.0 (2022-04)

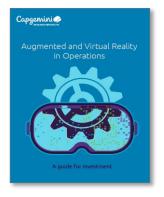
Technical Repor

3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Extended Reality (XR) in 5G (Release 17)

The present decreases than been cheveloped within the Jail Occasion Patrick stip Project (2019¹⁷⁾, and may be father ofther order for the proposed of 2019. The present decreases that not been excluded to the supergrease of present progressional Patricks and still not be implemented. This Paperia is prove field for finish edivelopment work within 3019° only. This Capacitanism Patricks and add in the being information of the 1019° from the present of the September of the 1010° for the present of the September of the 1010° for the present of the 1010° for the present control of the 1010° for the private decidable whereand we than 1010° for guarantees of the 1010° for the private decidable whereand we than 1010° for guarantees of the 1010° for the 10

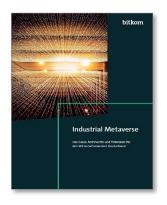

Grundlagen und Begriffe XR

- International Organization for Standardization (ISO). Mixed and augmented reality (MAR) reference model. ISO, 1. Februar 2019, https://www.iso.org/standard/30824.html.
- Institute of Electrical and Electronics Engineers (IEEE). Standard for VR and AR: Device Taxonomy and Definitions. IEEE, https://sagroups.ieee.org/2048wg/.
- XR Safety Initiative. XRSI Definitions of Extended Reality (XR). XR Safety Initiative, 31. Dezember 2018, https://xrsi.org/research-standards.
- Consumer Technology Association: Definitions and Characteristics for VR Video and VR Images. Consumer Technology Association, November 2019, https://shop.cta.tech/collections/standards/products/definitions-and-characteristics-for-vr-video-and-vr-images.
- Consumer Technology Association (CTA): Definitions and Characteristics of Augmented and Virtual Reality Technologies. Consumer Technology Association, 2020, https://shop.cta.tech/collections/standards/products/definitions-and-characteristics-of-augmented-and-virtual-reality-technologies.
- European Telecommunications Standards Institute: Augmented Reality Framework (ARF); AR framework architecture. ETSI, März 2020, https://www.etsi.org/standards-search.
- International Electrotechnical Commission (IEC). 3D display devices Part 1-2: Generic Terminology and letter symbols. IEC oder VDE-Verlag, 17. September 2021, https://webstore.iec.ch/publication/71273.
- Eyewear display Part 1-1: Generic introduction. IEC oder VDE-Verlag, 26. September 2018, https://webstore.iec.ch/publication/60982.
- Eyewear display Part 1-2: Generic Terminology. IEC oder VDE-Verlag, 20. Juli 2022, https://webstore.iec.ch/publication/64063.
- Touch and interactive displays Part 1-2: Generic Terminology and letter symbols. IEC oder VDE-Verlag, 15. September 2017, https://webstore.iec.ch/publication/28112.


24.10.2023

XR Standards Working Groups

The International Organization for Standardization (ISO) an independent, non-governmental organization, whose members consist of various national standardization bodies. As of 2022, there are 167 members who represent ISO in their country, with each country having only one member. The organization develops and publishes international standards in all technical and non-technical areas. except for electrical engineering and electronics, which fall under the jurisdiction of the International Electrotechnical Commission. By February 2023, ISO has developed over 24,676 standards that cover all areas from industrial products and technology to food safety, agriculture, and healthcare. The Moving **Picture Experts Group (MPEG)** is a group of experts dealing with the standardization of video compression and related areas, such as audio data compression or container formats. Colloquially, "MPEG" usually refers not to the group of experts, but to a specific MPEG standard. The MPEG meets three or four times a year for five-day meetings. About 350 experts from 200 companies and organizations from 20 countries participate in these meetings, the MPEG meetings. MPEG is part of ISO/IEC JTC1/SC29.



Förderhinweis: Das Projekt wird vom Bundesministerium für Bildung und Forschung unter dem Förderkennzeichen 16SV8827 gefördert.